bst365体育网站平台|官网|首页

Nan Chen: A Nonlinear Conditional Gaussian Framework for Extreme Events Prediction, State Estimation and Uncertainty Quantification in Complex Dynamical System


Published:2019-11-27


Title: A Nonlinear Conditional Gaussian Framework for Extreme Events Prediction, State Estimation and Uncertainty Quantification in Complex Dynamical System
Lecturer:Nan Chen
Department of Mathematics University of Wisconsin-Madison
Inviter:Prof. Zhemin  Tan
Time: Wednesday Dec 4, 2019 at2:00 PM
Venue: Lecture Hall D103, School of Atmospheric Sciences
Abstract:A conditional Gaussian framework for uncertainty quantification, data assimilation and prediction of nonlinear turbulent dynamical systems will be introduced in this talk. Despite the conditional Gaussianity, the dynamics remain highly nonlinear and are able to capture strongly non-Gaussian features such as intermittency and extreme events. The conditional Gaussian structure allows efficient and analytically solvable conditional statistics that facilitates the real-time data assimilation and prediction. 
The talk will include three applications of such conditional Gaussian framework. In the first part, a physics-constrained nonlinear stochastic model is developed, and is applied to predicting the Madden-Julian oscillation indices with strongly non-Gaussian intermittent features.The second part regards the state estimation and data assimilation of multiscale and turbulent ocean flows using noisy Lagrangian tracers.  In the last part of the talk, an efficient statistically accurate algorithm is developed that is able to solve a rich class of high dimensional Fokker-Planck equation with strong Fokker-Planck non-Gaussian fearures and beat the curse of dimensions.

  • Contact us
    njuas@nju.edu.cn
    (86)-25-89682575
    (86)-25-89683084 (fax)

  • Atmospheric Sciences Building
    Nanjing University · Xianlin Campus
    163 Xianlin Road, Qixia District
    Nanjing, Jiangsu Province, 210023

Baidu
sogou